Multitask learning deep neural networks to combine revealed and stated preference data
Shenhao Wang,
Qingyi Wang and
Jinhua Zhao
Journal of choice modelling, 2020, vol. 37, issue C
Abstract:
It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze individual choices. While the nested logit (NL) model is the classical way to address the question, this study presents multitask learning deep neural networks (MTLDNNs) as an alternative framework, and discusses its theoretical foundation, empirical performance, and behavioral intuition. We first demonstrate that the MTLDNNs are theoretically more general than the NL models because of MTLDNNs’ automatic feature learning, flexible regularizations, and diverse architectures. By analyzing the adoption of autonomous vehicles (AVs), we illustrate that the MTLDNNs outperform the NL models in terms of prediction accuracy but underperform in terms of cross-entropy losses. To interpret the MTLDNNs, we compute the elasticities and visualize the relationship between choice probabilities and input variables. The MTLDNNs reveal that AVs mainly substitute driving and ride hailing, and that the variables specific to AVs are more important than the socio-economic variables in determining AV adoption. Overall, this work demonstrates that MTLDNNs are theoretically appealing in leveraging the information shared by RP and SP and capable of revealing meaningful behavioral patterns, although its performance gain over the classical NL model is still limited. To improve upon this work, future studies can investigate the inconsistency between prediction accuracy and cross-entropy losses, novel MTLDNN architectures, regularization design for the RP-SP question, MTLDNN applications to other choice scenarios, and deeper theoretical connections between choice models and the MTLDNN framework.
Keywords: Multitask learning deep neural network; Machine learning; Revealed preference; Stated preference; Autonomous vehicles (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534520300348
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:37:y:2020:i:c:s1755534520300348
DOI: 10.1016/j.jocm.2020.100236
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().