EconPapers    
Economics at your fingertips  
 

mixl: An open-source R package for estimating complex choice models on large datasets

Joseph Molloy, Felix Becker, Basil Schmid and Kay W. Axhausen

Journal of choice modelling, 2021, vol. 39, issue C

Abstract: This paper introduces mixl, a new R package for the estimation of advanced choice models. The estimation of such models typically relies on simulation methods with a large number of random draws to obtain stable results. mixl uses inherent properties of the log-likelihood problem structure to greatly reduce both the memory usage and runtime of the estimation procedure for specific types of mixed multinomial logit models. Functions for prediction and posterior analysis are included. Parallel computing is also supported, with near linear speedups observed on up to 24 cores. mixl is directly accessible from R, available on CRAN. We show that mixl is fast, easy to use, and scales to very large datasets. This paper presents the architecture and performance of the package, details its use, and presents some results using real world data and models.

Keywords: Multinomial logit; Mixed logit; Choice modelling; R, hybrid choice; Estimation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534521000178
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:39:y:2021:i:c:s1755534521000178

DOI: 10.1016/j.jocm.2021.100284

Access Statistics for this article

Journal of choice modelling is currently edited by S. Hess and J.M. Rose

More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eejocm:v:39:y:2021:i:c:s1755534521000178