Stated choice analysis of preferences for COVID-19 vaccines using the Choquet integral
Rico Krueger and
Ricardo A. Daziano
Journal of choice modelling, 2022, vol. 45, issue C
Abstract:
We investigate preferences for COVID-19 vaccines using data from a stated choice survey conducted in the US in March 2021. To analyse the data, we embed the Choquet integral, a flexible aggregation operator for capturing attribute interactions under monotonicity constraints, into a mixed logit model. We find that effectiveness is the most important vaccine attribute, followed by risk of severe side effects and protection period. The attribute interactions reveal that non-pecuniary vaccine attributes are synergistic. Out-of-pocket costs are independent of effectiveness, incubation period, and mild side effects but exhibit moderate synergistic interactions with other attributes. Vaccine adoption is significantly more likely among individuals who identify as male, have obtained a bachelor’s degree or a higher level of education, have a high household income, support the democratic party, had COVID-19, got vaccinated against the flu in winter 2020/21, and have an underlying health condition.
Keywords: COVID-19; Vaccines; Patient preferences; Stated choice; Discrete choice (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534522000422
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:45:y:2022:i:c:s1755534522000422
DOI: 10.1016/j.jocm.2022.100385
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().