EconPapers    
Economics at your fingertips  
 

Profiling effects in industrial data mining by non-parametric DOE methods: An application on screening checkweighing systems in packaging operations

George J. Besseris

European Journal of Operational Research, 2012, vol. 220, issue 1, 147-161

Abstract: There is a growing interest in applying robust techniques for profiling complex processes in industry. In this work, we present an approach for analyzing fractional-factorial data by building distribution-free models suitable for dealing with replicated trials in search of non-linear effects. The technique outlined in this article is synthesized by implementing four key elements: (1) the data collection efficiency of non-linear fractional factorial designs, (2) the data compression capabilities of rank-sums for repetitive sampling schemes, (3) the rank-ordering as a means to transform data, and (4) the non-parametric screening for prominent effects where the normality and sparsity assumptions are waived. The technique is tested on four controlling factors for profiling the packaging weighing operations of a pharmaceutical enterprise. The robust data mining of repeated trials based on an L9(34) orthogonal array scheme with embedded uncontrolled noise is discussed extensively. The technique has been subjected to quality control as it is tested with well-defined artificial data. Concluding remarks involve contrasting this new technique with mainstream competing schemes.

Keywords: Process screening; Robust design; Design of Experiments; Non-linear optimization; Non-parametric data mining; Non-linear orthogonal array (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712000409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:220:y:2012:i:1:p:147-161

DOI: 10.1016/j.ejor.2012.01.020

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:147-161