An incremental least squares algorithm for large scale linear classification
A. Cassioli,
A. Chiavaioli,
C. Manes and
M. Sciandrone
European Journal of Operational Research, 2013, vol. 224, issue 3, 560-565
Abstract:
In this work we consider the problem of training a linear classifier by assuming that the number of data is huge (in particular, data may be larger than the memory capacity). We propose to adopt a linear least-squares formulation of the problem and an incremental recursive algorithm which requires to store a square matrix (whose dimension is equal to the number of features of the data). The algorithm (very simple to implement) converges to the solution using each training data once, so that it effectively handles possible memory issues and is a viable method for linear large scale classification and for real time applications, provided that the number of features of the data is not too large (say of the order of thousands). The extensive computational experiments show that the proposed algorithm is at least competitive with the state-of-the-art algorithms for large scale linear classification.
Keywords: Large scale optimization; Machine learning; Linear classification; Incremental algorithms (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221712006674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:224:y:2013:i:3:p:560-565
DOI: 10.1016/j.ejor.2012.09.004
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().