An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem
Tommy Messelis and
Patrick De Causmaecker
European Journal of Operational Research, 2014, vol. 233, issue 3, 511-528
Abstract:
This paper investigates the construction of an automatic algorithm selection tool for the multi-mode resource-constrained project scheduling problem (MRCPSP). The research described relies on the notion of empirical hardness models. These models map problem instance features onto the performance of an algorithm. Using such models, the performance of a set of algorithms can be predicted. Based on these predictions, one can automatically select the algorithm that is expected to perform best given the available computing resources. The idea is to combine different algorithms in a super-algorithm that performs better than any of the components individually. We apply this strategy to the classic problem of project scheduling with multiple execution modes. We show that we can indeed significantly improve on the performance of state-of-the-art algorithms when evaluated on a set of unseen instances. This becomes important when lots of instances have to be solved consecutively. Many state-of-the-art algorithms perform very well on a majority of benchmark instances, while performing worse on a smaller set of instances. The performance of one algorithm can be very different on a set of instances while another algorithm sees no difference in performance at all. Knowing in advance, without using scarce computational resources, which algorithm to run on a certain problem instance, can significantly improve the total overall performance.
Keywords: Decision support systems; Combinatorial optimisation; Performance prediction; Project scheduling; Algorithm portfolio; Automatic algorithm selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713006863
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:233:y:2014:i:3:p:511-528
DOI: 10.1016/j.ejor.2013.08.021
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().