EconPapers    
Economics at your fingertips  
 

The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices

Saman Babaie-Kafaki and Reza Ghanbari

European Journal of Operational Research, 2014, vol. 234, issue 3, 625-630

Abstract: Minimizing two different upper bounds of the matrix which generates search directions of the nonlinear conjugate gradient method proposed by Dai and Liao, two modified conjugate gradient methods are proposed. Under proper conditions, it is briefly shown that the methods are globally convergent when the line search fulfills the strong Wolfe conditions. Numerical comparisons between the implementations of the proposed methods and the conjugate gradient methods proposed by Hager and Zhang, and Dai and Kou, are made on a set of unconstrained optimization test problems of the CUTEr collection. The results show the efficiency of the proposed methods in the sense of the performance profile introduced by Dolan and Moré.

Keywords: Nonlinear programming; Large-scale optimization; Conjugate gradient algorithm; Singular value; Global convergence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713009119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:3:p:625-630

DOI: 10.1016/j.ejor.2013.11.012

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:234:y:2014:i:3:p:625-630