The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices
Saman Babaie-Kafaki and
Reza Ghanbari
European Journal of Operational Research, 2014, vol. 234, issue 3, 625-630
Abstract:
Minimizing two different upper bounds of the matrix which generates search directions of the nonlinear conjugate gradient method proposed by Dai and Liao, two modified conjugate gradient methods are proposed. Under proper conditions, it is briefly shown that the methods are globally convergent when the line search fulfills the strong Wolfe conditions. Numerical comparisons between the implementations of the proposed methods and the conjugate gradient methods proposed by Hager and Zhang, and Dai and Kou, are made on a set of unconstrained optimization test problems of the CUTEr collection. The results show the efficiency of the proposed methods in the sense of the performance profile introduced by Dolan and Moré.
Keywords: Nonlinear programming; Large-scale optimization; Conjugate gradient algorithm; Singular value; Global convergence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713009119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:234:y:2014:i:3:p:625-630
DOI: 10.1016/j.ejor.2013.11.012
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().