Improving the robustness in railway station areas
Thijs Dewilde,
Peter Sels,
Dirk Cattrysse and
Pieter Vansteenwegen
European Journal of Operational Research, 2014, vol. 235, issue 1, 276-286
Abstract:
In order to improve the robustness of a railway system in station areas, this paper introduces an iterative approach to successively optimize the train routing through station areas and to enhance this solution by applying some changes to the timetable in a tabu search environment. We present our vision on robustness and describe how this vision can be used in practice. By introducing the spread of the trains in the objective function for the route choice and timetabling module, we improve the robustness of a railway system. Using a discrete event simulation model, the performance of our algorithms is evaluated based on a case study for the Brussels’ area. The computational results indicate an average improvement in robustness of 6.2% together with a decrease in delay propagation of about 25%. Furthermore, the effect of some measures like changing the train offer to further increase the robustness is evaluated and compared.
Keywords: Transportation; Robustness; Railway timetabling; Train routing; Bottleneck scheduling; Mixed integer linear programming (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221713008916
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:235:y:2014:i:1:p:276-286
DOI: 10.1016/j.ejor.2013.10.062
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).