EconPapers    
Economics at your fingertips  
 

A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem

Yuning Chen and Jin-Kao Hao

European Journal of Operational Research, 2014, vol. 239, issue 2, 313-322

Abstract: The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard combinatorial optimization problem with a number of important applications. In this paper, we present a “reduce and solve” heuristic approach which combines problem reduction techniques with an Integer Linear Programming (ILP) solver (CPLEX). The key ingredient of the proposed approach is a set of group fixing and variable fixing rules. These fixing rules rely mainly on information from the linear relaxation of the given problem and aim to generate reduced critical subproblem to be solved by the ILP solver. Additional strategies are used to explore the space of the reduced problems. Extensive experimental studies over two sets of 37 MMKP benchmark instances in the literature show that our approach competes favorably with the most recent state-of-the-art algorithms. In particular, for the set of 27 conventional benchmarks, the proposed approach finds an improved best lower bound for 11 instances and as a by-product improves all the previous best upper bounds. For the 10 additional instances with irregular structures, the method improves 7 best known results.

Keywords: Knapsack; Fixing heuristics; Linear relaxation; Hybridization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004482
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:239:y:2014:i:2:p:313-322

DOI: 10.1016/j.ejor.2014.05.025

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:239:y:2014:i:2:p:313-322