EconPapers    
Economics at your fingertips  
 

Retail store scheduling for profit

Nicolas Chapados, Marc Joliveau, L’Ecuyer, Pierre and Louis-Martin Rousseau

European Journal of Operational Research, 2014, vol. 239, issue 3, 609-624

Abstract: In spite of its tremendous economic significance, the problem of sales staff schedule optimization for retail stores has received relatively scant attention. Current approaches typically attempt to minimize payroll costs by closely fitting a staffing curve derived from exogenous sales forecasts, oblivious to the ability of additional staff to (sometimes) positively impact sales. In contrast, this paper frames the retail scheduling problem in terms of operating profit maximization, explicitly recognizing the dual role of sales employees as sources of revenues as well as generators of operating costs. We introduce a flexible stochastic model of retail store sales, estimated from store-specific historical data, that can account for the impact of all known sales drivers, including the number of scheduled staff, and provide an accurate sales forecast at a high intra-day resolution. We also present solution techniques based on mixed-integer (MIP) and constraint programming (CP) to efficiently solve the complex mixed integer non-linear scheduling (MINLP) problem with a profit-maximization objective. The proposed approach allows solving full weekly schedules to optimality, or near-optimality with a very small gap. On a case-study with a medium-sized retail chain, this integrated forecasting–scheduling methodology yields significant projected net profit increases on the order of 2–3% compared to baseline schedules.

Keywords: Shift scheduling; Constraint programming; Mixed integer programming; Statistical forecasting; Retail (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:239:y:2014:i:3:p:609-624

DOI: 10.1016/j.ejor.2014.05.033

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:239:y:2014:i:3:p:609-624