EconPapers    
Economics at your fingertips  
 

A mean-shift algorithm for large-scale planar maximal covering location problems

Zhou He, Bo Fan, T.C.E. Cheng, Shou-Yang Wang and Chin-Hon Tan

European Journal of Operational Research, 2016, vol. 250, issue 1, 65-76

Abstract: The planar maximal covering location problem (PMCLP) concerns the placement of a given number of facilities anywhere on a plane to maximize coverage. Solving PMCLP requires identifying a candidate locations set (CLS) on the plane before reducing it to the relatively simple maximal covering location problem (MCLP). The techniques for identifying the CLS have been mostly dominated by the well-known circle intersect points set (CIPS) method. In this paper we first review PMCLP, and then discuss the advantages and weaknesses of the CIPS approach. We then present a mean-shift based algorithm for treating large-scale PMCLPs, i.e., MSMC. We test the performance of MSMC against the CIPS approach on randomly generated data sets that vary in size and distribution pattern. The experimental results illustrate MSMC’s outstanding performance in tackling large-scale PMCLPs.

Keywords: Location; Large scale optimization; Planar maximal covering location problem; Mean shift (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715008309
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:250:y:2016:i:1:p:65-76

DOI: 10.1016/j.ejor.2015.09.006

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:65-76