Design heuristic for parallel many server systems
Ivo J.B.F. Adan,
Marko A.A. Boon and
Gideon Weiss
European Journal of Operational Research, 2019, vol. 273, issue 1, 259-277
Abstract:
We study a parallel queueing system with multiple types of servers and customers. A bipartite graph describes which pairs of customer-server types are compatible. We consider the service policy that always assigns servers to the first, longest waiting compatible customer, and that always assigns customers to the longest idle compatible server if on arrival multiple compatible servers are available. For a general renewal stream of arriving customers, general service time distributions that depend both on customer and on server types, and general customer patience distributions, the behavior of such systems is very complicated. Key quantities for their performance are the matching rates, the fraction of services for each pair of compatible customer-server. Calculation of these matching rates in general is intractable, it depends on the entire shape of service time distributions. We suggest through a heuristic argument that if the number of servers becomes large, the matching rates are well approximated by matching rates calculated from the tractable bipartite infinite matching model. We present simulation evidence to support this heuristic argument, and show how this can be used to design systems with desired performance requirements.
Keywords: Queueing; Parallel service systems; Multi-type customers and servers; Matching rates; Resource pooling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718307379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:273:y:2019:i:1:p:259-277
DOI: 10.1016/j.ejor.2018.08.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().