Structural combination of seasonal exponential smoothing forecasts applied to load forecasting
Juan F. Rendon-Sanchez and
Lilian M. de Menezes
European Journal of Operational Research, 2019, vol. 275, issue 3, 916-924
Abstract:
This article draws from research on ensembles in computational intelligence to propose structural combinations of forecasts, which are point forecast combinations that are based on information from the parameters of the individual models that generated the forecasts. Two types of structural combination are proposed which use seasonal exponential smoothing as base models, and are applied to forecast short-term electricity demand. Although forecasting performance may depend on how ensembles are generated, results show that the proposed combinations can outperform competitive benchmarks. The methods can be used to forecast other seasonal data and be extended to different types of forecasting models.
Keywords: Forecasting; Combination of forecasts; Electricity demand/load forecasting; Ensembles; Exponential smoothing methods (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221718310518
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:275:y:2019:i:3:p:916-924
DOI: 10.1016/j.ejor.2018.12.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).