EconPapers    
Economics at your fingertips  
 

Generalizing the Theta method for automatic forecasting

Evangelos Spiliotis, Vassilios Assimakopoulos and Spyros Makridakis

European Journal of Operational Research, 2020, vol. 284, issue 2, 550-558

Abstract: The Theta method became popular due to its superior performance in the M3 forecasting competition. Since then, although it has been shown that Theta provides accurate forecasts for various types of data, being a solid benchmark to beat, limited research has been conducted to exploit its full potential and generalize its reach. This paper examines three extensions on Theta’s framework to boost its performance. This includes (i) considering both linear and non-linear trends, (ii) allowing to adjust the slope of such trends, and (iii) introducing a multiplicative expression of the underlying forecasting model along with the existing, additive one. The proposed modifications transform Theta into a generalized forecasting algorithm, suitable for automatic time series predictions. The proposed algorithm is evaluated using the series of the M, M3, and M4 competitions. Such an evaluation shows that the proposed approach produces more accurate forecasts than the original, classic Theta, both in terms of point forecasts and prediction intervals, and is also more accurate than other well-known methods for yearly series.

Keywords: Forecasting; Time series; Theta method; Automatic model selection; M competitions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720300242
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:284:y:2020:i:2:p:550-558

DOI: 10.1016/j.ejor.2020.01.007

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:550-558