How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments
Trevor Fitzpatrick and
Christophe Mues
European Journal of Operational Research, 2021, vol. 294, issue 2, 711-722
Abstract:
Successful Peer-to-Peer (P2P) lending requires an evaluation of loan profitability from a large universe of loans. Predictions of loan profitability may be useful to rank potential investments. We investigate whether various types of prediction methods and the types of information contained in loan listing features matter for profitable investment. A range of methods and performance metrics are used to benchmark predictive performance, based on a large dataset of P2P loans issued on Lending Club. Robust linear mixed models are used to investigate performance differences between models, according to whether they assume linearity, whether they build ensembles, and which types of predictors they use. The main findings are that: linear methods perform surprisingly well on several (but not all) criteria; whether ensemble methods perform better than individual methods is measure dependent; the use of alternative text-based information does not improve profit scoring outcomes. We conclude that P2P lenders could potentially increase their investment returns by applying linear methods that directly predict the internal rate of return instead of other dependent variables such as loan default.
Keywords: Investment analysis; P2P Lending; Predictive modelling; Ensemble learning; Credit scoring (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721000771
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:294:y:2021:i:2:p:711-722
DOI: 10.1016/j.ejor.2021.01.047
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().