Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19
Debajyoti Biswas and
Laurent Alfandari
European Journal of Operational Research, 2022, vol. 303, issue 3, 1372-1391
Abstract:
The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and curfews have been deployed by affected countries for controlling the spread of infections. In this paper, we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model for computing the optimal sequence of NPIs over a planning horizon, considering shortages in doctors and hospital beds, under three different lockdown scenarios. We analyse two strategies - centralised (homogeneous decisions at the national level) and decentralised (decisions differentiated across regions), for two objectives separately - minimization of infections and deaths, using actual pandemic data of France. We linearize the quadratic constraints and objective functions in the MINLP model and convert it to a Mixed Integer Linear Programming (MILP) model. A major result that we show analytically is that under the epidemic model used, the optimal sequence of NPIs always follows a decreasing severity pattern. Using this property, we further simplify the MILP model into an Integer Linear Programming (ILP) model, reducing computational time up to 99%. Our numerical results show that a decentralised strategy is more effective in controlling infections for a given severity budget, yielding up to 20% lesser infections, 15% lesser deaths and 60% lesser shortages in healthcare resources. These results hold without considering logistics aspects and for a given level of compliance of the population.
Keywords: OR in healthcare; COVID-19; Non-Pharmaceutical interventions; Scheduling; Integer programming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722002752
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:303:y:2022:i:3:p:1372-1391
DOI: 10.1016/j.ejor.2022.03.052
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().