EconPapers    
Economics at your fingertips  
 

An expandable machine learning-optimization framework to sequential decision-making

Dogacan Yilmaz and İ. Esra Büyüktahtakın

European Journal of Operational Research, 2024, vol. 314, issue 1, 280-296

Abstract: We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder–decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively.

Keywords: (R) Machine learning; Encoder–decoder; Capacitated lot-sizing; Knapsack; Combinatorial optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723008202
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:314:y:2024:i:1:p:280-296

DOI: 10.1016/j.ejor.2023.10.045

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:280-296