A new ordinal mixed-data sampling model with an application to corporate credit rating levels
Leonie Goldmann,
Jonathan Crook and
Raffaella Calabrese
European Journal of Operational Research, 2024, vol. 314, issue 3, 1111-1126
Abstract:
In this paper we propose a new ordinal logistic regression model (OLMIDAS) that allows the inclusion of independent variables at higher frequencies than that of the dependent variable. A simulation study shows that our proposed model can find the true patterns in the data. In an empirical study we apply OLMIDAS to the prediction of corporate credit rating levels and compare its performance to classical logistic regression models with an annual aggregation of the higher-frequency variable, such as ordinal logistic regression and multinomial logistic regression. We find that OLMIDAS outperforms the classical logistic regression models while providing additional knowledge of the structure of the higher-frequency explanatory variable.
Keywords: OR in banking; Ordinal regression; Credit ratings; Mixed-frequency models; MIDAS (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723007890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:314:y:2024:i:3:p:1111-1126
DOI: 10.1016/j.ejor.2023.10.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().