EconPapers    
Economics at your fingertips  
 

A branch-and-bound algorithm with growing datasets for large-scale parameter estimation

Susanne Sass, Alexander Mitsos, Dominik Bongartz, Ian H. Bell, Nikolay I. Nikolov and Angelos Tsoukalas

European Journal of Operational Research, 2024, vol. 316, issue 1, 36-45

Abstract: The solution of nonconvex parameter estimation problems with deterministic global optimization methods is desirable but challenging, especially if large measurement datasets are considered. We propose to exploit the structure of this class of optimization problems to enable their solution with the spatial branch-and-bound algorithm. In detail, we start with a reduced dataset in the root node and progressively augment it, converging to the full dataset. We show for nonlinear programs (NLPs) that our algorithm converges to the global solution of the original problem considering the full dataset. The implementation of the algorithm extends our open-source solver MAiNGO. A numerical case study with a mixed-integer nonlinear program (MINLP) from chemical engineering and a dynamic optimization problem from biochemistry both using noise-free measurement data emphasizes the potential for savings of computational effort with our proposed approach.

Keywords: Global optimization; Nonlinear programming; Large scale optimization; Regression; Spatial branch and bound algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724001280
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:316:y:2024:i:1:p:36-45

DOI: 10.1016/j.ejor.2024.02.020

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:36-45