EconPapers    
Economics at your fingertips  
 

An empirical Bayesian approach to stein-optimal covariance matrix estimation

Benjamin J. Gillen

Journal of Empirical Finance, 2014, vol. 29, issue C, 402-420

Abstract: This paper proposes a conjugate Bayesian regression model to estimate the covariance matrix of a large number of securities. Characterizing the return generating process with an unrestricted factor model, prior beliefs impose structure while preserving estimator consistency. This framework accommodates economically-motivated prior beliefs and nests shrinkage covariance matrix estimators, providing a common model for their interpretation. Minimizing posterior finite-sample square error delivers a fully-automated covariance matrix estimator with beliefs that become diffuse as the sample grows relative to the dimension of the problem. In application, this Stein-optimal posterior covariance matrix performs well in a large set of simulation experiments.

Keywords: Bayesian estimation; Covariance matrix shrinkage; Asset allocation (search for similar items in EconPapers)
JEL-codes: C11 C58 G11 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539814000875
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:29:y:2014:i:c:p:402-420

DOI: 10.1016/j.jempfin.2014.09.006

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:empfin:v:29:y:2014:i:c:p:402-420