EconPapers    
Economics at your fingertips  
 

What drives volatility of the U.S. oil and gas firms?

Štefan Lyócsa and Neda Todorova

Energy Economics, 2021, vol. 100, issue C

Abstract: We study how the day-ahead stock price volatility of 15 firms that are S&P 500 constituents in the Oil & Gas Exploration & Production sub-industry is driven through six volatility factors represented by realized volatilities, namely, (i) firms’ own volatility, (ii) industry market volatility, (iii) local (U.S.) market volatility, (iv) world equity market volatility, (v) oil price volatility, and (vi) natural gas price volatility. Existing studies have reported results based on analysis of one or few volatility components, but given the high dependence among volatility factors, this might bias (overestimate) the true importance of each of the volatility factors on the price fluctuation of stocks in the Oil & Gas Exploration & Production sub-industry. To take into account this inter-relatedness of volatility factors, we study all volatility factors together. Using augmented heterogeneous autoregressive (HAR) models and dynamic model averaging, our analysis shows that market volatility is most influential, followed by a stock’s own volatility and industry level volatility. The role of the volatility of the oil market is of lesser importance, while the volatility of the world equity market does not appear to contain incremental information useful for predicting the volatility of firms in the Oil & Gas Exploration & Production sub-industry. The role of the natural gas market is specific. An in-sample analysis suggests a negative relationship between firm-level volatility and volatility on the natural gas market. However, in an out-of-sample framework, the volatility of the natural gas market appears to be unrelated to firm-level volatility. Dynamic model averaging further suggests that the market and industry factors are time-varying. These findings have implications for financial risk management, as we show that in an out-of-sample framework, HAR models augmented with volatility factors outperform the plain HAR model by up to a 3.88% increase in volatility forecast accuracy.

Keywords: Oil & Gas sub-industry; Volatility forecasting; Volatility factors; HAR; Dynamic Model Averaging (search for similar items in EconPapers)
JEL-codes: C5 C53 G17 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S014098832100270X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:100:y:2021:i:c:s014098832100270x

DOI: 10.1016/j.eneco.2021.105367

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eneeco:v:100:y:2021:i:c:s014098832100270x