Rate design with distributed energy resources and electric vehicles: A Californian case study
Icaro Silvestre Freitas Gomes,
Yannick Perez () and
Emilia Suomalainen
Energy Economics, 2021, vol. 102, issue C
Abstract:
The high penetration of distributed energy resources and electric vehicles is changing the way the electricity system is managed. In turn, the way utilities have been recovering their expenditures through tariffs needs reformulation. We investigate the impact of different retail tariff designs from a Californian scenario on private investment incentives and cost-shifting using solar PVs, stationary batteries, and electric vehicles. The private commercial facilities studied do not own the vehicles, and the vehicle owners are remunerated for energy services provided; this remuneration strongly depends on the connection hours of the vehicles and the type of tariff applied. EV net income varies annually from $57 to $218 per vehicle, reaching the highest values when stationary batteries are present and significant demand charges are applied. We found that an energy-based tariff incentivizes the adoption of solar PVs, bringing high private gains, but often with high cost-shifting. A shift toward coincident peak tariffs in the short term and capacity-based tariffs in the long run, if the cost of DERs continues to fall quickly, can alleviate cost-shifting caused by strong DER penetration. Finally, we derive policy implications from the results and earmark more sophisticated tariff designs for further investigation.
Keywords: Electric vehicle; Stationary battery; Photovoltaic energy; Tariff design (search for similar items in EconPapers)
JEL-codes: L51 L94 L97 Q42 Q48 Q55 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988321003868
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Rate design with distributed energy resources and electric vehicles: A Californian case study (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003868
DOI: 10.1016/j.eneco.2021.105501
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().