Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China's cities
Ailun Wang,
Shuo Hu and
Jianglong Li
Energy Economics, 2022, vol. 114, issue C
Abstract:
Improving carbon emission efficiency is essential to address climate change. The widely used methods of modelling heterogeneity in efficiency evaluation tend to artificially classify groups based on a single variable and thus result in biased estimation. To fill this knowledge gap, this paper proposes a new method that combines machine learning and radial directional distance function (DDF) to estimate carbon emission efficiency and reduction potential, in which heterogeneity could be grouped endogenously. Furthermore, index decomposition analysis (IDA) is incorporated to explore the dynamic determinants of carbon emission reduction potential. Using China's data at city level from 2010 to 2018, we found that carbon emission efficiency considering technology heterogeneity is between 0.569–0.822. This implies an excellent emission reduction potential of around 5.9 million tons in 2018. The reduction potential is attributable to managerial failure and technology gap—the latter accounts for 46–55% of the total reduction potential. We arguably conclude that the method in this paper can capture each city's economic and environmental information more accurately than previous methods based on geographic grouping, which may underestimate the reduction potential. We anticipate the machine learning method in this paper could provide insights on clustering the technological heterogeneity and efficiency evaluation.
Keywords: Machine learning; Heterogeneity; Carbon emission efficiency; Reduction potential; Directional distance function; Index decomposition analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988322003826
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003826
DOI: 10.1016/j.eneco.2022.106238
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().