An oil futures volatility forecast perspective on the selection of high-frequency jump tests
Xiafei Li,
Yin Liao,
Xinjie Lu and
Feng Ma
Energy Economics, 2022, vol. 116, issue C
Abstract:
This paper examines the forecasting performances of high-frequency jump tests for oil futures volatility from a comprehensive perspective. It contributes to the literature by investigating which jump test is the best for oil futures volatility forecasting under different circumstances and whether the jump component extracted from multiple alternative tests is useful for further improving forecasting performance. Our results show that the jumps of the TOD test (Bollerslev et al., 2013) have satisfactory performance over the medium-term and especially the short-term forecasting horizons. Most importantly, the jump components from the intersection of multiple intraday tests further improve the forecasting performance. A variety of further discussions, including models controlling for stock market effects and considering periods of high (low) volatility and the COVID-19 pandemic period, confirm the conclusions. This paper attempts to shed light on oil futures volatility prediction from the perspective of jump test selection.
Keywords: Oil futures volatility; Jump test selection; Volatility forecasting; HAR-RV-type models; High-frequency data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S014098832200487X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:116:y:2022:i:c:s014098832200487x
DOI: 10.1016/j.eneco.2022.106358
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().