A stochastic time-series model for solar irradiation
Karl Larsson,
Rikard Green and
Fred Espen Benth
Energy Economics, 2023, vol. 117, issue C
Abstract:
We propose a novel stochastic time series model able to explain the stylized features of daily irradiation level data in 5 cities in Germany. The model is suitable for applications to risk management of photovoltaic power production in renewable energy markets. The suggested dynamics is a low-order autoregressive time series with seasonal level given by an atmospheric clear-sky model. Moreover, we detect a skewness property in the residuals which we explain by a winter–summer regime switch. The stochastic variance is modeled by a seasonally varying GARCH-dynamics. The winter and summer standardized residuals are proposed to be a Gaussian mixture model to capture the bimodal distributions. We estimate the model on the observed data, and perform a validation study. An application to energy markets studying the production at risk for a PV-producer is presented.
Keywords: Solar; Time-series; Photovoltaic; Renewable; Energy; Risk (search for similar items in EconPapers)
JEL-codes: C5 Q4 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988322005503
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:117:y:2023:i:c:s0140988322005503
DOI: 10.1016/j.eneco.2022.106421
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().