Local energy management: A base model for the optimization of virtual economic units
Benjamin Hildebrandt,
Johann Hurink and
Michael Manitz
Energy Economics, 2024, vol. 129, issue C
Abstract:
As non-renewable resources are limited and the overall CO2 emissions need to be reduced drastically, there is an increasing need in making the energy supply more sustainable. This leads to a needed change in the traditional energy system, in which decentralized local energy resources must be better integrated. In order to face the challenges for a future energy management, the consideration of the domestic level is gaining more attention. In this paper, we aim to get insights into the potential value of local cooperations and focus on economic and control issues as to whether and how the domestic level can participate in upcoming solutions. We introduce a possible setup for a virtual economic unit representing a hybrid cooperation of domestic energy participants, whereby the objective of this cooperation is to realize the maximum possible savings for the community with specified individual contracts between the participants and assuming that participants continue to have additional contracts with their energy service provider. We propose a deterministic linear optimization model for determining optimal energy load profiles of the participants with the external suppliers and energy exchange between participants in a virtual economic unit. To efficiently solve this model and get an exact assignment of supply and demand, we present a maximum saving flow algorithm taking into account the underlying bipartite structure of this problem. The solution achieved is specified as a peer-to-peer allocation between the participants involved and provides insights into the aspects that determine the concrete assignment. It also has the advantage of leading to a robust solution within the collaboration case studies for a basic set-up demonstrate the impact of this approach on the economic potential of aggregating local generation and demand at the same time.
Keywords: Energy decentralization; Peer-to-peer energy exchange; Local energy management; Renewable energy; OR in Energy; Mathematical methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988323007508
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007508
DOI: 10.1016/j.eneco.2023.107252
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().