Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms
Tuo Ye,
Songyu Zhao,
Chi Keung Lau and
Frankie Chau
Energy Economics, 2024, vol. 133, issue C
Abstract:
Hydrogen energy is significant in the energy consumption, especially in Hydrogen Fuel Cell Vehicles(HFCVs) market. Social media data is critical for exploring public perceptions of HFCVs. To find hot topics and understand the public sentiment of HFCVs, we employ a computational model, which combines Kmeans algorithm, Latent Dirichlet Allocation (LDA), and SnowNLP. The training data consists of 42,063 comments sourced from Bilibili-a popular Chinese social media platform. The analysis has identified 12 clusters, each with distinct topics and sentiments. The results reveal that the Chinese public generally holds a neutral stance on the hydrogen energy market, while some stakeholders maintain a positive on the technology and development of HFCVs, but some concerns about the transportation and safety of hydrogen fuel. Furthermore, this study offers suggestions for the technological, operational, and strategic advancement of HFCVs.
Keywords: Hydrogen fuel cell vehicles; Kmeans algorithm; Latent Dirichlet Allocation method; Social media sentiment; Public perception (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S014098832400272X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:133:y:2024:i:c:s014098832400272x
DOI: 10.1016/j.eneco.2024.107564
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().