EconPapers    
Economics at your fingertips  
 

Supply elasticity matters for the rebound effect and its impact on policy comparisons

Hamed Ghoddusi and Mandira Roy

Energy Economics, 2017, vol. 67, issue C, 111-120

Abstract: We develop a model of the rebound effect which explicitly accounts for both the demand and supply sides of the energy sources. We consider a transportation sector originally using a “dirty” (fossil) fuel and examine the relative effectiveness of alternative policies: efficiency improvements in the dirty fuel technology sector (e.g., CAFE standards) and technology shifts by partial adoption of a new clean technology (e.g., low-carbon fuel standards). The model generates endogenous equilibrium quantities and prices for the dirty and clean fuels. We characterize the magnitude of the rebound effect as a function of demand and supply elasticities and use the equilibrium values to compare policy options. When the supply of the dirty fuel is inelastic, we find that introducing a new technology with non-zero emissions may actually increase the total level of emissions, similar to the leakage effect. A technology shift policy can perform better than an efficiency improvement policy in the dirty fuel sector only when the dirty fuel supply is sufficiently elastic, the emission intensity of the new technology very low, and the technology shift is greater than a threshold value. Using data for gasoline (as a proxy for the dirty technology) and several other cleaner technologies, we show that these conditions are satisfied by a hypothetical zero-emission technology, but not by electric vehicles using the average US generation mix or the current US corn based E85. Our results demonstrate the importance of accounting for the supply side in estimating the magnitude of the rebound effect and its impact on fuel consumption in a large-scale policy implementation.

Keywords: Rebound effect; Supply elasticity; Endogenous fuel price; Efficiency improvement; Clean fuel (search for similar items in EconPapers)
JEL-codes: D01 Q31 Q35 Q52 R40 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988317302542
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:67:y:2017:i:c:p:111-120

DOI: 10.1016/j.eneco.2017.07.017

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eneeco:v:67:y:2017:i:c:p:111-120