A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems
Luigi Boffino,
Antonio J. Conejo,
Ramteen Sioshansi and
Giorgia Oggioni
Energy Economics, 2019, vol. 84, issue C
Abstract:
In 2015, 195 countries signed the Paris Agreement under the United Nations Framework Convention on Climate Change. To achieve the ambitious greenhouse gas-reduction targets therein, the electric power sector must be transformed fundamentally. To this end, we develop a two-stage stochastic optimization model. The proposed model determines the optimal mix of generation and transmission capacity to build to serve future demands at least cost, while respecting technical constraints and climate-related considerations. The model uses a mix of AC and high-voltage DC transmission lines, conventional and renewable generation, and different types of energy-storage units to meet these objectives. Short- and long-term uncertainties are modeled using operating conditions and scenarios, respectively.
Keywords: Generation-expansion planning; Transmission-expansion planning; Stochastic optimization; Climate policy; Energy storage (search for similar items in EconPapers)
JEL-codes: C61 C63 Q4 Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988319302385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302385
DOI: 10.1016/j.eneco.2019.07.017
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().