Ask CARL: Forecasting tail probabilities for energy commodities
Bernardina Algieri and
Arturo Leccadito
Energy Economics, 2019, vol. 84, issue C
Abstract:
We use a set of conditional auto-regressive logit (CARL) models to predict tail probabilities for returns calculated from futures of four energy commodities. We show that CARL models are very useful to forecast the probability of tail events in energy markets and the forecasting ability of the models generally increases when commodity implied volatility is added as a predictor. We further present new bivariate models to jointly forecast the probabilities that returns from a given commodity and from the S&P 500 index are on the left tail and models for the coexceedances. We find that CARL family models have always a better forecasting performance than GARCH and Quantile-Augmented Volatility models in a univariate and multivariate setting. Conversely, when modelling coexceedances, CARL models exhibit a better predictive capacity only for Brent and heating oil.
Keywords: Probability forecasting; Energy commodities; CARL models (search for similar items in EconPapers)
JEL-codes: G10 Q02 Q47 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988319302786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302786
DOI: 10.1016/j.eneco.2019.104497
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().