Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach
Quyen Nguyen,
Ivan Diaz-Rainey and
Duminda Kuruppuarachchi
Energy Economics, 2021, vol. 95, issue C
Abstract:
Corporations have come under pressure from investors and other stakeholders to disclose and reduce their greenhouse gas emissions (GHG). Corporate GHG footprints, proxying for transition risk, are dominated by carbon emissions from energy use. Thus the growing attention on the carbon emissions of corporations from, principally, their energy use, motivates firms to invest in energy efficiency and renewable energy. However, only a subset of corporations disclose their GHG/carbon footprints. This paper uses machine learning to improve the prediction of corporate carbon emissions for risk analyses by investors. We introduce a two-step framework that applies a Meta-Elastic Net learner to combine predictions from multiple base-learners as the best emission prediction approach. It results in an accuracy gain based on mean absolute error of up to 30% as compared with the existing models. We also find that prediction accuracy can be further improved by incorporating additional predictors (energy production/consumption data) and additional firm disclosures in particular sectors and regions. This provides an indication of where policymakers should concentrate their efforts for greater level of disclosure.
Keywords: Climate change; Corporate carbon footprints; Machine learning; Corporate energy use (search for similar items in EconPapers)
JEL-codes: G17 Q51 Q52 Q54 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988321000347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988321000347
DOI: 10.1016/j.eneco.2021.105129
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().