EconPapers    
Economics at your fingertips  
 

The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach

Yuze Li, Shangrong Jiang, Xuerong Li and Shouyang Wang

Energy Economics, 2021, vol. 95, issue C

Abstract: In this paper, we extract the qualitative information from crude oil news headlines, and develop a novel VMD-BiLSTM model with investor sentiment indicator for crude oil forecasting. First, we construct a sentiment score considering cumulative effect from contextual data of oil news texts. Then, we adopt an event-based method and GARCH model to investigate the impact of news sentiment on returns and volatility. A non-recursive signal decomposition method, namely variational mode decomposition (VMD), is applied to decompose the historical crude oil return and volatility data into various intrinsic modes. After that, a bidirectional long short-term memory neural networks (BiLSTM) is introduced as the deep learning prediction model that integrates both the qualitative and quantitative model inputs. Our empirical results indicate that the shock of news sentiment significantly causes the fluctuation of oil futures prices, and news sentiment has an asymmetric impact on the volatility of oil futures. The incorporation of sentiment score is always helpful for improving the forecasting performances in all benchmark scenarios. Specifically, our proposed data-decomposition based deep learning model is more effective than several econometric and machine learning models.

Keywords: News sentiment; Returns and volatility forecasting; Variational mode decomposition; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988321000451
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988321000451

DOI: 10.1016/j.eneco.2021.105140

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988321000451