Biomass feedstock supply chain network design with biomass conversion incentives
N. Muhammad Aslaam Mohamed Abdul Ghani,
Chrysafis Vogiatzis and
Joseph Szmerekovsky
Energy Policy, 2018, vol. 116, issue C, 39-49
Abstract:
Biomass has the potential to create sustainable energy systems, which is critical for societal welfare. A major issue regarding biomass resources is crop residues or leftover biomass that is burnt by farmers after harvesting; this happens due to high transportation costs which make burning the cheapest way to remove the residue. We develop a decision support system using a large-scale linear program with the goal of maximizing profit with and without the emission cost. This system helps identify farms that would benefit society were they to be incentivized under a biomass crop assistance program (BCAP). A case study of leftover corn stover in the state of North Dakota is analyzed to validate the model. Our results reveal that an incentive of $7.20 per ton of corn stover converted to ethanol when 20% of rail capacity is allocated is ideal, as it produces the lowest emissions of 16,784,953 metric tons with a $73,462,599 profit. Furthermore, penalizing emissions resulting from the transportation of corn stover also helps reduce emissions; a suitable value for the penalty could be $71.7 per metric ton of CO2 emitted. Such a policy would result in reducing dependency on petroleum, thus promoting a sustainable biomass supply chain.
Keywords: Biomass; Supply chain management; Incentives; Optimization; Greenhouse gas emissions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030142151830051X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:116:y:2018:i:c:p:39-49
DOI: 10.1016/j.enpol.2018.01.042
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().