A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India
Shobhit Chaturvedi,
Elangovan Rajasekar,
Sukumar Natarajan and
Nick McCullen
Energy Policy, 2022, vol. 168, issue C
Abstract:
Selecting a suitable energy demand forecasting method is challenging due to the complex interplay of long-term trends, short-term seasonalities, and uncertainties. This paper compares four time-series models performance to predict total and peak monthly energy demand in India. Indian's Central Energy Authority's (CEA) existing trend-based model is used as a baseline against (i) Seasonal Auto-Regressive Integrated Moving Average (SARIMA), (ii) Long Short Term Memory Recurrent Neural Network (LSTM RNN) and (iii) Facebook (Fb) Prophet models. Using 108 months of training data to predict 24 months of unseen data, the CEA model performs well in predicting monthly total energy demand with low root-mean square error (RMSE 4.23 GWh) and mean absolute percentage error (MAPE, 3.4%), but significantly under predicts monthly peak energy demand (RMSE 13.31 GW, MAPE 7.2%). In contrast, Fb Prophet performs well for monthly total (RMSE 4.23 GWh, MAPE 3.3%) and peak demand (RMSE 6.51 GW, MAPE 3.01%). SARIMA and LSTM RNN have higher prediction errors than CEA and Fb Prophet. Thus, Fb Prophet is selected to develop future energy forecasts from 2019 to 2024, suggesting that India's annual total and peak energy demand will likely increase at an annual growth rate of 3.9% and 4.5%, respectively.
Keywords: Energy demand forecasting; SARIMA; LSTM RNN; Fb prophet (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421522003226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003226
DOI: 10.1016/j.enpol.2022.113097
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().