EconPapers    
Economics at your fingertips  
 

A tripartite equilibrium for carbon emission allowance allocation in the power-supply industry

Jiuping Xu, Xin Yang and Zhimiao Tao

Energy Policy, 2015, vol. 82, issue C, 62-80

Abstract: In the past decades, there has been a worldwide multilateral efforts to reduce carbon emissions. In particular, the “cap-and-trade” mechanism has been regarded as an effective way to control emissions. This is a market-based approach focused on the efficient allocation of initial emissions allowances. Based on the “grandfather” allocation method, this paper develops an alternative method derived from Boltzmann distribution to calculate the allowances. Further, with fully considering the relationship between the regional authority, power plants and grid company, a three-level multi-objective model for carbon emission allowance allocations in the power-supply industry is presented. To achieve tripartite equilibrium, the impacts on electricity output, carbon emissions and carbon intensity of the allocation method, allocation cap, and emission limits are assessed. The results showed that the greatest impact was seen in the emission limits rather than the allocation cap or allocation method. It also indicated that to effectively achieve reduction targets, it is necessary to allocate greater allowances to lower carbon intensity power plants. These results demonstrated the practicality and efficiency of the proposed model in seeking optimal allocation policies.

Keywords: Carbon emission allowance allocation; Power-supply industry; Tripartite equilibrium; Emission limits (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421515001020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:82:y:2015:i:c:p:62-80

DOI: 10.1016/j.enpol.2015.02.029

Access Statistics for this article

Energy Policy is currently edited by N. France

More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:enepol:v:82:y:2015:i:c:p:62-80