EconPapers    
Economics at your fingertips  
 

Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis

Min Li and Bingxiong Zhao

Energy, 2016, vol. 106, issue C, 121-130

Abstract: Conventionally, we need complete and accurate property diagrams or equations of state of the working fluid to calculate the thermal efficiency of ORCs (organic Rankine cycles). In this paper, we develop by entropy-generation analysis several analytical expressions for the thermal efficiency of ORCs. These analytical formulas are functions of several dimensionless variables, enabling fast and accurate calculations without recourse to thermodynamic diagrams or equations of state. The entropy-generation analysis clarifies the thermodynamic mechanism behind the effect of superheat in the evaporator on the thermal efficiency. Among the derived dimensionless variables, cT3/r (T3 is the evaporating temperature, r is the heat of evaporation at the evaporating temperature, and c is the average heat capacity of the saturated liquid) reflects the influence of the critical temperature on the thermal efficiency and can serve as an indicator of evaluating working fluids in the same group: thermal efficiency generally decreases with cT3/r for the working fluids in the same category.

Keywords: ORCs (organic Rankine cycles); Second-law analysis; Entropy generation analysis; Low grade waste heat recovery; Medium-low temperature heat utilization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216302985
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:106:y:2016:i:c:p:121-130

DOI: 10.1016/j.energy.2016.03.054

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:121-130