EconPapers    
Economics at your fingertips  
 

Modeling of waste heat powered energy system for container ships

Tao Cao, Hoseong Lee, Yunho Hwang, Reinhard Radermacher and Ho-Hwan Chun

Energy, 2016, vol. 106, issue C, 408-421

Abstract: A novel waste heat powered system is proposed to meet heating, cooling and refrigeration demands on a container ship to reduce its fuel consumption. A cascaded absorption-compression configuration is adopted to meet cooling and refrigeration demands simultaneously. Major components such as sea route weather, vapor compression cycle reefer units and main engine are modeled in details. The system is simulated under transient sea route weather conditions and loading/unloading conditions, and compared with the conventional system design. The conventional system simulation results are validated against experimental data with coefficient of variation of the root mean square error less than 30%. Simulation results revealed the proposed waste heat powered system is able to reduce diesel generator's fuel consumption by 38% and hot climate are in favor of fuel savings. Sankey diagram is used to analyze energy and CO2 emission flows of both systems. It is concluded that direct emissions from diesel generators are the dominant factor in both systems. Replacing the conventional system with the waste heat powered system has negligible effects on the main engine fuel consumption for propulsion but reduces life cycle cost by 12%.

Keywords: Waste heat; Cascaded cooling; Container ships; Refrigeration; Vapor compression cycle; Energy saving (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216303164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:106:y:2016:i:c:p:408-421

DOI: 10.1016/j.energy.2016.03.072

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:408-421