EconPapers    
Economics at your fingertips  
 

Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube

Zeng-Yao Li, Zhen Huang and Wen-Quan Tao

Energy, 2016, vol. 113, issue C, 1288-1303

Abstract: In this paper, a numerical investigation is presented, aiming at the effect of the buoyancy force induced by the non-uniform heat flux on the laminar flow and heat transfer characteristics in the solar receiver tube of parabolic trough collector. The flow and heat transfer performances are analyzed for forced and mixed laminar convection in receiver tube heated by uniform and non-uniform heat fluxes with different Grashof numbers, Reynolds numbers and solar elevation angles. The results show that the natural convection can increase heat transfer rate of laminar forced convection by more than 10% when the Grashof number is greater than a threshold value. The mixed fluid flow and heat transfer characteristics vary with solar elevation angle. Heat transfer deterioration occurs when the Richardson number is greater than 12.8.

Keywords: Parabolic trough collector; Mixed laminar convection; Non-uniform heat flux; Grashof number; Solar elevation angle (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216310817
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:1288-1303

DOI: 10.1016/j.energy.2016.07.148

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1288-1303