EconPapers    
Economics at your fingertips  
 

Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion

László Daróczy, Gábor Janiga and Dominique Thévenin

Energy, 2016, vol. 113, issue C, 399-412

Abstract: Due to the growing importance of wind energy, improving the efficiency of energy conversion is essential. Horizontal Axis Wind Turbines are the most well-spread, but H-Darrieus turbines are becoming popular as well due to their simple design and easier integration. Due to the high efficiency of existing wind turbines, further improvements require numerical optimization. One important aspect is to find a better configuration that is also robust, i.e., a configuration that retains its performance under uncertainties. For this purpose, forward uncertainty propagation has to be applied. In the present work, an Uncertainty Quantification (UQ) method, Polynomial Chaos Expansion, is applied to transient, turbulent flow simulations of a variable-speed H-Darrieus turbine, taking into account uncertainty in the preset pitch angle and in the angular velocity. The resulting uncertainty of the performance coefficient and of the quasi-periodic torque curve are quantified. In the presence of stall the instantaneous torque coefficients tend to show asymmetric distributions, meaning that error bars cannot be correctly reconstructed using only mean value and standard deviation. The expected performance was always found to be smaller than in computations without UQ techniques, corresponding to up to 10% of relative losses for λ = 2.5.

Keywords: Wind energy; Darrieus; CFD; H-rotor; Uncertainty quantification; Polynomial Chaos Expansion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216309215
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:399-412

DOI: 10.1016/j.energy.2016.07.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:399-412