EconPapers    
Economics at your fingertips  
 

Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy

Y.J. Zhao, R.Z. Wang, T.X. Li and Y. Nomura

Energy, 2016, vol. 113, issue C, 739-747

Abstract: Heating and domestic hot water for family houses represents a notable share of energy consumption. However, sufficient space for the installation of thermal energy storage (TES) components may not be available in family houses or urban areas, where space may be restricted and expensive. Sorption TES devices seem to be a promising means of replacing conventional TES devices and reducing the occupied space for its high energy density. In this paper, a 10 kWh short-term sorption TES device was developed and investigated. The employed composite sorbent was formed from lithium chloride (LiCl) with the addition of expanded graphite (EG). The principle of sorption TES for the LiCl/water working pair is first illustrated. This prototype was tested under conditions representative of transition or winter seasons. Under the conditions used (charging temperature Tcha at 85 °C, discharging temperature Tdis at 40 °C, condensing temperature Tc at 18 °C, and evaporating temperature Te at 30 °C), the heat storage capacity can reach 10.25 kWh, of which sorption heat accounts for approximately 60%. The heat storage density obtained was 873 Wh per kg of composite sorbent or 65.29 kWh/m3, while the heat storage density of hot water tank was about 33.02 kWh/m3.

Keywords: Sorption thermal energy storage; Water vapor sorption; Composite sorbent; Lithium chloride (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216310246
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:739-747

DOI: 10.1016/j.energy.2016.07.100

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:739-747