Sand-propylene glycol-water nanofluids for improved solar energy collection
S. Manikandan and
K.S. Rajan
Energy, 2016, vol. 113, issue C, 917-929
Abstract:
Experiments were carried out on the preparation, thermophysical properties' measurement and application of surfactant-free, sand-propylene glycol-water nanofluids for solar energy collection. Thermal conductivity enhancement of 16.3% and viscosity reduction of 47% were observed for 2 vol % sand-PG-water nanofluid at 28 °C. Microconvection caused by Brownian motion was identified as one of the mechanisms of thermal conductivity enhancement. The relative viscosity of sand-propylene glycol-water nanofluid was less than 1 over a temperature range of 10–60 °C and sand nanoparticle concentration range of 0.5–2 vol %. The lower viscosity of sand-PG-water nanofluids in comparison to that of propylene glycol-water mixture is attributed to non-covalent interactions between sand nanoparticles and propylene glycol, leading to perturbation of hydrogen bonding network. The use of 2 vol % sand-PG-water nanofluid resulted in enhancement of heat transfer and solar energy collection by 16.5%. Our results demonstrate that sand-PG-water nanofluids are suitable for use as heat transfer fluid in solar collectors.
Keywords: Solar energy collection; Enhancement; Propylene glycol-water; Relative viscosity; Thermal conductivity ratio; Brownian motion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216310441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:113:y:2016:i:c:p:917-929
DOI: 10.1016/j.energy.2016.07.120
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().