Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique
Abu Raihan Mohammad Siddique,
Ronil Rabari,
Shohel Mahmud and
Bill Van Heyst
Energy, 2016, vol. 115, issue P1, 1081-1091
Abstract:
In this paper, a manual dispenser printing-based fabrication technique has been developed to synthesize a flexible thermoelectric generator (FTEG). Fabricated FTEGs, printed on polyester fiber clothe, convert the thermal energy from the human body into electrical energy using the Seebeck effect. Two flexible prototypes (prototype A and prototype B) were fabricated using a manual dispenser printing technique with n-type (0.98Bi,0.02Sb)2(0.9Te,0.1Se)3 and p-type (0.25Bi,0.75Sb)2(0.95Te,0.05Se)3 thermoelectric (TE) materials. The fabricated prototypes consisted of 12 pairs of n-type and p-type legs connected by silver conductive threads. The experimental investigations were conducted to determine the characteristics and the electrical outputs of the fabricated prototypes. The open circuit voltage and power output of prototype A and prototype B were 22.1 mV and 2.21 nW, and 23.9 mV and 3.107 nW, respectively, at 22.5 °C temperature difference. The fabricated prototypes were also tested on the human body at different body conditions and were found to be very flexible, twistable, and durable with the substrate as well as conforming well to the human body.
Keywords: Dispenser printing technology; Flexible TEG; Human body waste heat energy; Scanning electron microscope (SEM); Thermoelectric (TE) material properties (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216313287
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:115:y:2016:i:p1:p:1081-1091
DOI: 10.1016/j.energy.2016.09.087
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().