EconPapers    
Economics at your fingertips  
 

Spray combustion characteristics of kerosene/bio-oil part II: Numerical study

S.I. Yang, T.C. Hsu and M.S. Wu

Energy, 2016, vol. 115, issue P1, 458-467

Abstract: A numerical method was employed to simulate kerosene with a bio-oil additive derived through a fast pyrolysis process in a model for spray combustion flow field. The influences of various oxidizer velocities and proportions of the bio-oil additive on kerosene spray combustion were investigated. The results indicate that for the kerosene with the bio-oil additive, an increase in the oxidizer velocity decreased and intensified the spray combustion regime mainly because an increase in the spray angle reduced the unit area of the droplets, and the turbulence increased the mixing of fuel and oxidizer. The kerosene spray combustion regimes with the bio-oil additive were reduced when the proportion of the additive was increased, mainly because the bio-oil was derived from the biomass in a fast pyrolysis process; specifically, the condense temperature influenced the volatility of the bio-oil components. Compared with pure kerosene, the volatile bio-oil underwent early vaporization into fuel vapor; this resulted in an early reaction after mixing with the oxidizer and an indirect early kerosene reaction, thereby contributing to the decrease in the kerosene spray combustion regime with the bio-oil additive. Because the heating value of the bio-oil was low, the addition of excessive bio-oil reduced the combustion efficiency.

Keywords: Biomass; Fast pyrolysis; Kerosene; Bio-oil; Spray combustion; Droplet; Numerical simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216312828
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:115:y:2016:i:p1:p:458-467

DOI: 10.1016/j.energy.2016.09.047

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:458-467