A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment
Francesco Calise,
Massimo Dentice d'Accadia,
Adriano Macaluso,
Laura Vanoli and
Antonio Piacentino
Energy, 2016, vol. 115, issue P3, 1533-1547
Abstract:
In this paper, an innovative solar-geothermal polygeneration system is investigated. The system supplies a small community with electricity, desalinated water and space heating and cooling through a district network. The hybrid multi-purpose plant, based on an Organic Rankine Cycle (ORC) supplied by medium-enthalpy geothermal energy and by solar energy; this latter is provided by Parabolic Trough Collectors (PTC). The geothermal brine is first used to drive the ORC loop, then to provide space heating at around 85÷90 °C (in the winter), or cooling (in the summer, by means of a single-effect absorption chiller). Finally, the geothermal brine drives a Multi-Effect Distillation (MED) system, where seawater is converted into freshwater. For such a system, a dynamic simulation model was developed in TRNSYS environment. In particular, the ORC model, developed in Engineering Equation Solver (EES), was based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design performance. Similarly, a novel model of the MED unit was developed in EES. Suitable control strategies were implemented for the optimal management of system. The energy and economic performance of the system under analysis was investigated, using different time bases (day, week, month, year). Finally, a sensitivity analysis was performed to determine the set of system, design/control parameters able to minimize the simple payback period. The results showed that the novel system is highly flexible and efficient. On the other hand, a significant capital cost must be taken into account, so that the system is economically profitable only when the majority of the energy available for heating and cooling purposes is actually used.
Keywords: Solar energy; Geothermal energy; Polygeneration; Desalination; Thermoeconomic (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216310271
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:115:y:2016:i:p3:p:1533-1547
DOI: 10.1016/j.energy.2016.07.103
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().