EconPapers    
Economics at your fingertips  
 

Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures

Zuo-Yu Sun and Guo-Xiu Li

Energy, 2016, vol. 116, issue P1, 116-127

Abstract: Taking the laminar spherical flames propagate within homogenous hydrogen-air mixture as the studied object, the effects of initial conditions (including equivalence ratio, initial pressure, and initial temperature) on propagation characteristics are systematically investigated. During propagation, global stretch rate monotonously declines towards convergence, it first rises then declines with the increase of equivalence ratio (φ) from 0.5 to 4.0 and the maximal value is attained at φ = 1.8. With the declines of global stretch rate, the propagation speed within lean mixtures first declines and then rises, but it monotonously rises within stoichiometric and rich mixtures. Markstein length is sensitive to equivalence ratio and initial pressure rather than initial temperature. Unstretched laminar burning velocity isn't monotonously changed with the variation of equivalence ratio but it monotonously verifies with the variation of initial thermodynamic condition. Owing to the wane of stretch effects, flame develops towards unstable, the nexus between critical flame radius of cellularity behaviours and initial conditions are analysed based upon hydrodynamic and thermal-diffusive effects. In addition, the critical Peclet number is observed linear to equivalence ratio but less sensitive to initial ambient conditions.

Keywords: Laminar spherical hydrogen flame; Stretch effect; Burning velocity; Propagation speed; Cellularity behaviours; Critical Peclet number (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216313731
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:116:y:2016:i:p1:p:116-127

DOI: 10.1016/j.energy.2016.09.103

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:116-127