A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics
Tapas Kumar Patra,
K.R. Nimisha and
Pratik N. Sheth
Energy, 2016, vol. 116, issue P1, 1230-1242
Abstract:
A dynamic multiphase model combining mass and energy transport with kinetics for the gasification of wood in a downdraft gasifier is developed. The developed model takes into account the mass and energy balance of both solid and gas species. It also includes the reaction kinetics of various phenomena i.e. drying, pyrolysis, combustion and reduction occurring inside the gasifier. The global kinetics of pyrolysis, combustion kinetics of gaseous and solid species, homogenous and heterogeneous reduction kinetics and diffusion controlled moisture evaporation are incorporated in the model. The developed model is simulated to predict various variables such as biomass consumption rate, producer flow rate and its composition throughout the gasifier at various locations at different time. The model is validated with the experimental data reported in our earlier study. The simulation results are found to be well in agreement with the experimental data. The dynamic behavior of downdraft gasifier is studied by analyzing the axial profiles of temperature, concentration and density at different time.
Keywords: Biomass; Gasification; Downdraft gasifier; Transport and kinetic model; Modeling and simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216314578
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:116:y:2016:i:p1:p:1230-1242
DOI: 10.1016/j.energy.2016.10.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().