EconPapers    
Economics at your fingertips  
 

A new optimization approach to improve the overall performance of thick wind turbine airfoils

Xingxing Li, Ke Yang, Jingyan Bai and Jianzhong Xu

Energy, 2016, vol. 116, issue P1, 202-213

Abstract: A crucial problem of designing thick airfoils is balancing structural and aerodynamic requirements. This paper documented a new idea to deal with the thick airfoil's design. Firstly, the relative thickness of the original airfoil was increased to enhance its structural property. Then the overall aerodynamic performance was improved by the optimization design method. Specifically, this paper put forward a mathematical model of the overall optimization employing airfoil's performance evaluation indicators which represent modern rotor blades' aerodynamic requirements of “high efficiency, low extreme load, wide range of operating angle of attack and stability with varying operating conditions”. Based on this model, an integrated optimization platform for thick airfoils' overall design was established. Through an optimization experiment, a new 35-percent relative thickness airfoil was obtained. The new airfoil was predicted with high design lift coefficient, acceptable maximum lift to drag ratio, moderate stall parameter, and desirable stability parameters. These characteristics contribute to a high overall performance which could be competent with commonly used thick DU airfoils. Lift characteristics of the new airfoil have been validated by tests. These results confirmed the proposed method has effectively balanced airfoil's complicated requirements and successfully improved the new airfoil's overall performance.

Keywords: Horizontal axis wind turbine; Thick airfoil; Overall aerodynamic performance; Evaluating parameters; Numerical optimization; Mid span of blade (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216313809
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:116:y:2016:i:p1:p:202-213

DOI: 10.1016/j.energy.2016.09.108

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:202-213