Design of a risk-averse decision making tool for smart distribution network operators under severe uncertainties: An IGDT-inspired augment ε-constraint based multi-objective approach
Mohammadreza Mazidi,
Hassan Monsef and
Pierluigi Siano
Energy, 2016, vol. 116, issue P1, 214-235
Abstract:
In the context of restructured electricity market and smart grid, uncertainties including renewable generation, load demand, and electricity price would significantly affect the technical and financial aspects of smart distribution networks. This paper presents a risk-averse decision making tool to help distribution network operator (DNO) in short-term operational activities. The objective is to optimize hourly sale prices offered to the customers, transactions (purchase/sale) with the wholesale market, commitment of distributed generation, dispatch of energy storage systems, and planning of interruptible loads in a way that a target profit for the risk-averse DNO is guaranteed. A bi-level information gap decision theory (IGDT) inspired problem is developed to hedge the DNO against risk imposed by the information gap between the forecasted and actual uncertain variables. The bi-level problem is recast into its equivalent single level problem driven by Karush-Kuhn-Tucker optimality conditions. Since the uncertain variables compete with each other to maximize their enveloped-bounds, the augmented ε-constraint method is used to solve the proposed IGDT-inspired multi-objective optimization problem. A Monte Carlo simulation based after-the-fact analysis is conducted to verify the robust performance of the operational decisions. The effectiveness and efficiency of the proposed model are evaluated on the 33-bus and the 118-bus modified test networks.
Keywords: Augment ε-constraint method; Information gap decision theory; Short-term operation; Smart distribution network; Risk-averse; Uncertainty modelling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216313962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:116:y:2016:i:p1:p:214-235
DOI: 10.1016/j.energy.2016.09.124
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().