Potential solar energy use in the global petroleum sector
Jingfan Wang,
John O'Donnell and
Adam R. Brandt
Energy, 2017, vol. 118, issue C, 884-892
Abstract:
We examine the potential for solar energy in global oil operations, including both extraction and transport (“upstream”) and refining (“downstream”). Two open-source oil-sector GHG models are applied to a set of 83 representative global oil fields and 75 refinery crude oil streams (representing ∼25% of global production). Results from these models are used to estimate per-barrel energy intensities (power, heat), which are scaled to generate country-level demand for heat and power. Multiple solar resource quality cutoff criteria are used to determine which regions may profitably use solar. Potential solar thermal capacity ranges from 19 to 44 GWth in upstream operations, and from 21 to 95 GWth in downstream operations. Potential PV deployment ranges from 6 to 11 GWe in upstream operations and 17–91 GWe in downstream operations. The ranges above are due to both per-bbl variation in energy intensity, as well as uncertainty in solar resource quality criteria. Potential solar deployment in upstream operations would displace a much smaller fraction of upstream energy use because a large fraction of global upstream energy use is are either offshore or in high latitude regions (e.g., Russia, Canada, Central Asia).
Keywords: Petroleum; Solar PV; Solar thermal; Oil and gas; Greenhouse gas; LCA (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216315535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:884-892
DOI: 10.1016/j.energy.2016.10.107
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().