Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression
Hossein Farajollahi and
Siamak Hossainpour
Energy, 2017, vol. 118, issue C, 927-936
Abstract:
Post-combustion CO2 capture process is the most mature technology to mitigate CO2 emissions from the large-scales emission points. However, integrating the power plant with this process leads to significant thermal efficiency penalty due to steam extraction for solvent regeneration, power consumption by CO2 compression unit and other auxiliary equipment. In the current work, the detailed models of the 350 MWe thermal power plant, MEA-based CO2 capture and compression process were developed in Aspen HYSYS v8.3. Different configurations of integration process were investigated to achieve lower energy penalty. The power plant net thermal efficiency is 40.55% based on lower heating value and is reduced to 31.26% due to integration with CO2 capture and compression process. The net efficiency of the best studied configuration is 33.4%. CO2 compression intercoolers, steam cooler before reboiler and flue gas cooler are three low-temperature heat sources located in the integrated system were identified for utilizing by organic Rankine cycle (ORC). Three ORCs were used to recover these waste heats and can generate 17.38 MWe extra power that increase net thermal efficiency to 35.45%. The results show that efficiency drop is reduced significantly by utilizing ORCs in integration of thermal power plant with CO2 capture and compression.
Keywords: CO2 capture and compression; Thermal power plant; Organic Rankine cycle; Efficiency penalty; Waste heat recovery (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216315705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:927-936
DOI: 10.1016/j.energy.2016.10.124
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().